My long path towards O(n) longest-path in 2-trees

JORDAN BISERKOV

ClojuTRE Helsinki, Finland September 14th 2018

Jordan Biserkov

- Programming professionally since 2001
- Found Lisp in 2005 via pg essays & books
- ➢ Found Clojure on HN in 2010, fell in love
- Independent contractor for Cognitect since 2018
- > Biserkov.com

My epic journey in the 2-trees forests

- > End goal: implement the Big O(n) boss
- but first O(k) bosses in the Bottom-level
 - First use of my superpower

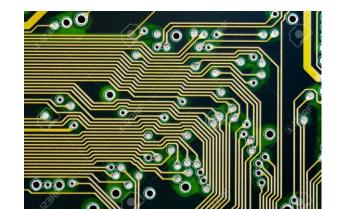
> The $O(n\sqrt{n})$ boss

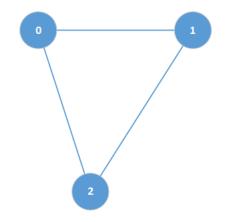
- Side quest: Find 5 bugs in a 3rd party library
- The ancient Structural tree

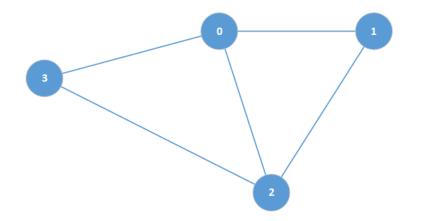
> The O(n log n) boss

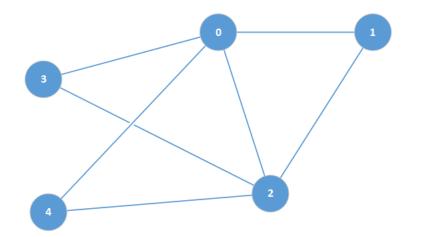
- A wild stack overflow appears
- The final fight

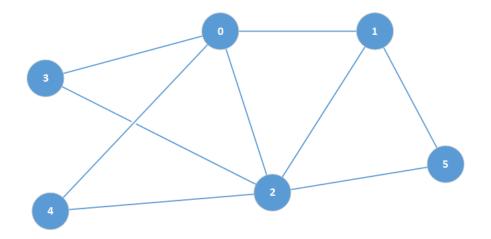
- 2-trees are NOT ...
- > Binary trees
- > Even trees
- 2-trees are ...
- A class of undirected graphs
- > Used to model electric circuits
- Recursively structured

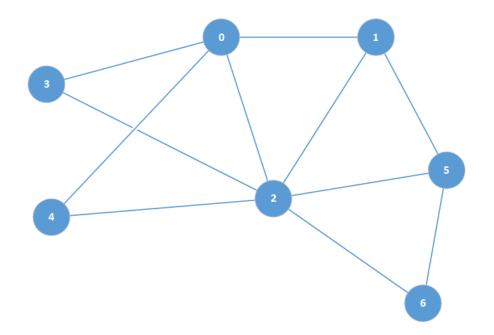


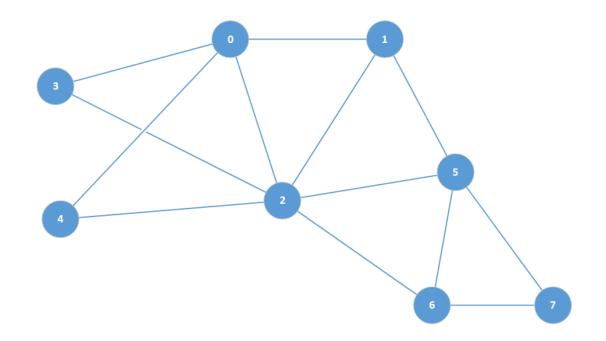


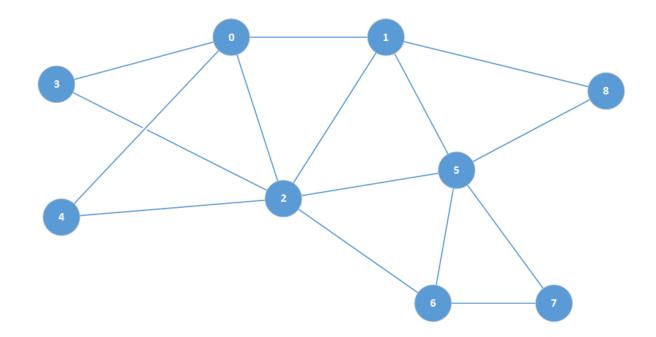


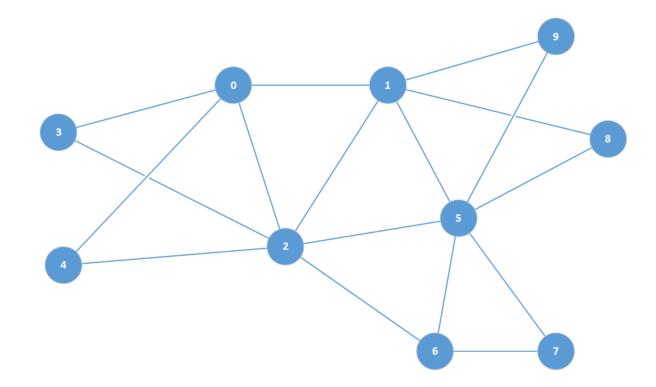


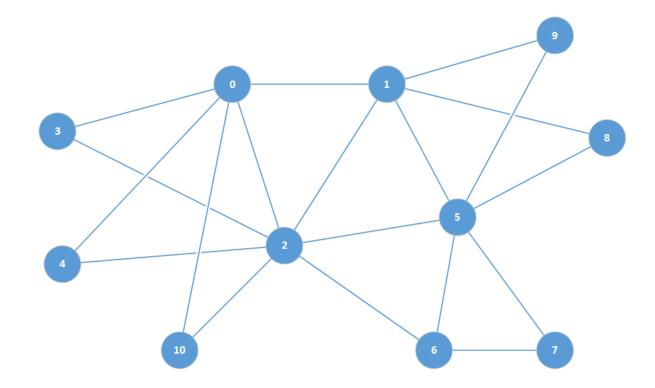












Background

- The 90's algorithm to compute the length of the longest path in a 2-tree has colossal hidden constants and is "linear" in purely abstract sense
 - Never implemented
- In 2013 Markov, Vassilev and Manev published a novel algorithm
 - Implemented as pseudo-code in the paper

Goal: Implement the MVM algorithm in O(n) time

Overview

Recursively split the 2-tree into sub-2-trees

- Only a few nodes change
- Perfect fit for Clojure's persistent data structures
- > Boundary cond.: Leaf edges, label [1 1 0 0 0 0 0]
- Combine labels of subtrees to compute parent tree label
- The first element of the label is the result the length of the longest-path

Code structure

Top level

• Compute-label

Middle level

- Combine-on-face
- Combine-on-edge

Bottom level – helper functions

- max-2-distinct
- max-3-distinct

a and b are vectors with k elements each

$$max\{a_i + b_j \mid i \neq j\}$$

(defn naive-max2DistinctFolios [a b n]
 (reduce max
 (for [i (range 0 k)
 j (range 0 k)
 ;when (not= i j)]

(+ (nth a i) (nth b j))))

Problem: 2 Nested for-loops \rightarrow O(k²) runtime

a = [1 2 3 4 5], b = [6 7 8 9 10]

+	1	2	3	4	5
6		8	9	10	11
7	8		10	11	12
8	9	10		12	13
9	10	11	12		14
10	11	12	13	14	

Optimization: O(k)

- > Iterate each vector separately, keeping track of:
 - the maximum
 - the second largest
 - the index of the maximum
- Check whether we can use both maxima (different indices) and if not - which alternative is larger
 - (max (+ maxA secondB)
 (+ maxB secondA))

a, b and c are vectors with k elements

$max\{a_i + b_j + c_t \mid i \neq j \neq t \neq i\}$

Problem: 3 Nested for-loops \rightarrow O(k³) runtime

Optimization: O(k)

- > Iterate each vector separately, keeping track of:
 - the maximum
 - the second largest
 - the third largest
 - the index of the maximum and the second largerst
- Check which of the 36 combos are valid and which sum is the largest
- > Terrible complexity, many bugs

Generative testing to the rescue

- > Also called property-based testing
- Finds complex bugs immediately
- Difficult to come up with a useful property
- Shrinks input to minimal case which triggers the bug, in this case often vectors with 0 and 1
- ≻Use (= (naïve ...)

(faster ...)) as testing property

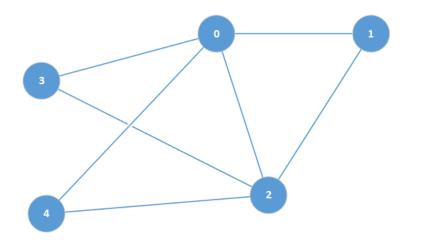
Previous implementation

- > Java
- > 2-tree represented as a matrix
- Sub-2-tree = submatrix = tons of copying
- ≻ O(n²) runtime
- > O(n²) memory usage

My first implementation

- ≻ Clojure
- > as close to the paper as possible
- > 2-tree represented as map from int to set of int
- > O(n \sqrt{n}) runtime
- > Perhaps Clojure's dynamic typing is the problem?

Optimization: use Zach Tellman's int-map and int-set



- $\{0 \ \#\{1 \ 2 \ 3 \ 4\}$
 - $1 \# \{0 2\}$
 - $2 \# \{0 \ 1 \ 3 \ 4\}$
 - 3 #{0 2}
 - $4 #\{0 2\}\}$

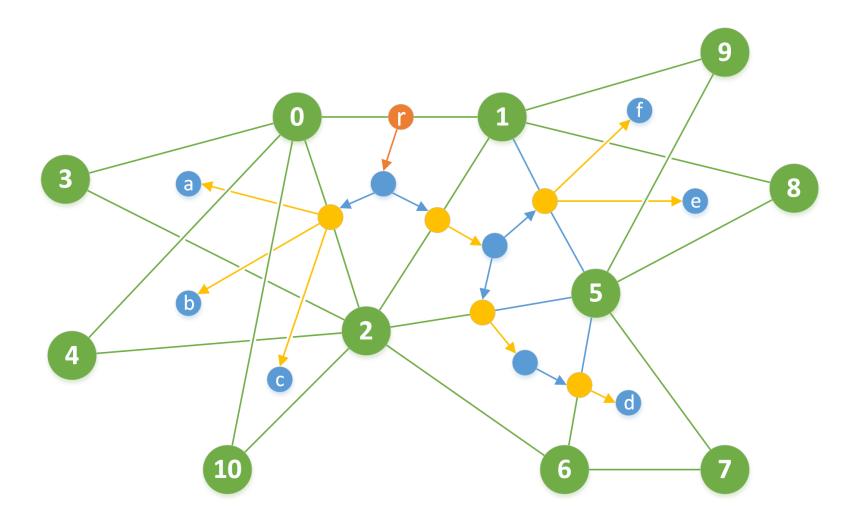
Runtime is faster, but complexity still $O(n\sqrt{n})$

Sidequest: find 5 bugs in 3rd-party library

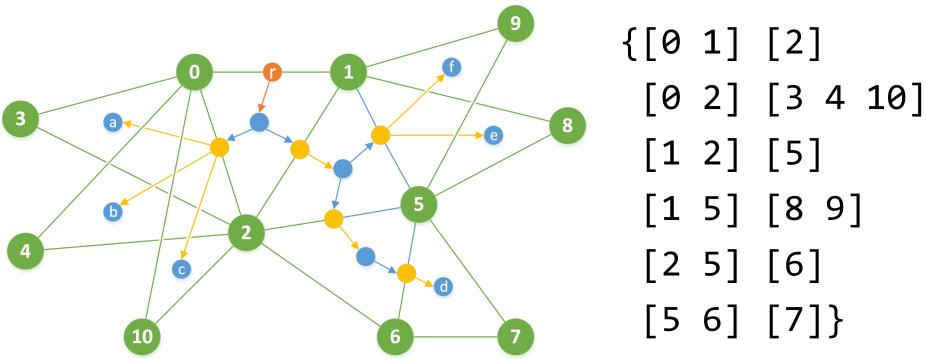
- The problem manifests as a NullPointerException
- > Cursive's debugger is awesome
 - Breakpoint on exception
- > Zach Tellman is a great guy, fixed bug quickly
- > Problem has evolved: infinite looping in subgraphwalk during multiple-recursion?!? How? Why?
- > 5 times in a row, same-day bug delivery, what sorcery is this?

The root cause of the slowdown?

- Splitting into sub-2-trees
- Persistent data structure are fast enough, actual updates not the problem
- Computing which vertices need updating is the problem
- The authors told me to seek the ancient Structural tree



Representation: map from edge to [vertices]



Blue nodes represented implicitly: parent edge + vertex External edge nodes represented implicitly as nil

My second implementation

- Iterative preprocessing step: builds structural tree
- Recursive part operates on structural tree
- > O(n log n) runtime
- More complex, unexplored territory
- Generative testing saves the day again
- > Best of both implementations
 - Straightforward and correct, but slow one
 - Complex and unproven, but faster one

Suddenly wild stack overflow appears

- But how?
- > Infinite recursion?
- > Another bug?
- > No, all tests pass. What?
- > A genuine stack overflow due to one benchmark using ultra-tall 2-trees

Workaround?

Increase the call stack size via JVM options, but the problem reappears when you double N a few times

Solution: Every recursive algorithm can be made iterative, by using an explicit stack parameter, instead of the call stack

Then it hit me – there is a data structure in my program that holds all the information it needs – the EdgesVerticies map.

With some modifications the recursive calls can be removed completely and all the work can be done during the preprocessing (bottom-up) phase

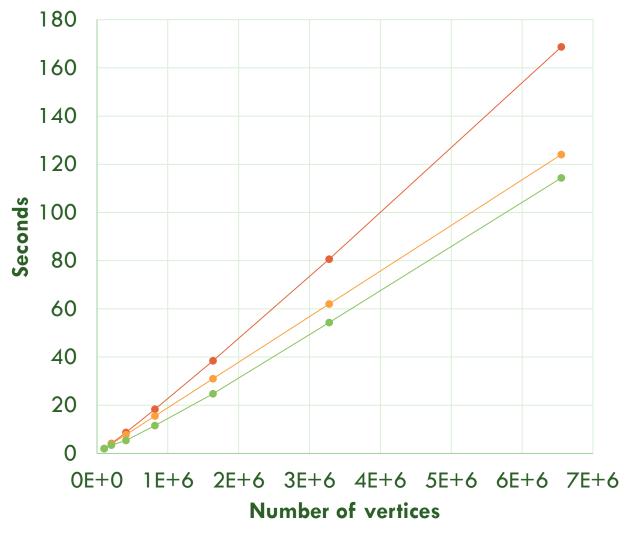
My third implementation

- > Iterative, dynamic programming, no recursive part
- ≻ O(n) runtime!!
- > Millions of vertices without overflow
- > Map from edge to vector of labels
- Generative testing saves the day yet again

The result

Projected O(n log n)
Projected O(n)
Actual time

Benchmarks via Criterium by Hugo Duncan



Implementations recap

	Туре	Direction	Data structure	Complexity
Java	Recursive	()	Matrix	$O(n^2)$
Direct	Recursive	()	int-map, int-set	$O(n\sqrt{n})$
Indirect	Iterative	f int-map, int-set		$O(m \log \pi m)$
	Recursive	()	EdgeVertices map	O(n log n)
Dynamic	Iterative)	int-map, int-set EdgeLabels map	0(n)

Transient variants of persistent data structures

- If the original value is never used after modification, it's safe to modify it in place, while still presenting an immutable interface to the outside world
- > Add complexity, so make your program work without them, then add:
 - a call to transient in the beginning
 - ! to assoc, dissoc, conj and friends
 - a call to persistent! at the end

Further optimization of middle level functions

- > Higher level decision making 2 simpler, faster functions instead of 1 complex, mathematically pure
- Proper case simplified greatly, removed branching
- Degenerate cases handled by specialized variant
 - Simplified greatly, removed branching
 - When a = 1 the expression (+ a b) becomes (inc b)
 - When c = 0 the expression (max c d) becomes d
- Frequent trivial case handled directly
 - No function call cost, no unnecessary computation

Memoization

- The function remembers the result for given parameters to avoid costly recomputation
- > Useful whenever a big problem is divided into smaller ones
- The built-in memoize returns a variable argument function, which adds overhead.
- If we know the number of arguments, we can build our own version which is simpler and faster

Resources

The algorithm

https://sites.google.com/site/minkommarkov/longest-

2-tree--draft.pdf

> My implementations

https://github.com/Biserkov/twotree-longest-path

> Understanding Clojure's transients

http://www.hypirion.com/musings/understanding-

clojure-transients

Thank you! Questions?